STATE BOARD OF TECHNICAL EDUCATION, BIHAR

Scheme of Teaching and Examination for

IVTH SEMESTER DIPLOMA IN ELECTRONICS ENGINEERING

(Effective form Session 2020-2021 Batch), (Rev. 1.0)

THEORY

			TEACHING SCHEME			EXAM	INATION SCHE	CME			
S.No	SUBJECTS	SUBJECT CODE	Periods per week	Hours of Exam	Teacher's Assessme nt (TA) Marks (A)	Class Test (CT) Marks (B)	End Semester Exam. (ESE) Marks (C)	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject	Credits
1.	Microcontroller and its Applications	2021401	03	03	10	20	70	100	28	40	03
2.	Consumer Electronics	2021402	04	03	10	20	70	100	28	40	03
3.	Digital Communication Systems	2021403	03	03	10	20	70	100	28	40	03
4.	Electronic Equipment Maintenance	2021404	04	03	10	20	70	100	28	40	03
5.	Linear Integrated Circuits	2021405	03	03	10	20	70	100	28	40	03
	Total : 17						350	500			15

PRACTICAL

		SUBJECT CODE	TEACHING SCHEME			EXAM	INATION SCHEME		
S.No	SUBJECTS			Hours	Practical			Pass Marks	
			Periods per week	of Exam	Internal (PA)	External (ESE)	TotalMarks(A+B)	in the Subject	Credits
					Α	В			
6.	Microcontroller and its Applications Lab	2021406	02 50% Physical 50% Virtual	03	15	35	50	20	01
7.	Digital Communication Systems Lab	2021407	02 50% Physical 50% Virtual	03	07	18	25	10	01
8.	Linear Integrated Circuits Lab	2021408	02 50% Physical 50% Virtual	03	07	18	25	10	01
9.	MATLAB	2020409	02 50% Physical 50% Virtual	03	07	18	25	10	01
			125		04				

TERM WORK

	SUBJECTS	SUBJECT	TEACHING SCHEME		EXAM	INATION SCHE	ME	
S.No		CODE	Periods per week	Marks of Internal Examiner PA (X)	Marks of External Examiner ESE (Y)	Total Marks (X+Y)	Pass Marks in the Subject	Credits
10.	Essence of Indian Knowledge and Tradition (TW)	2021410	02	07	18	25	10	01
11.	Microprocessor & its Application Lab (TW)	2021411	02	07	18	25	10	01
12.	Minor Project (TW)	2021412	04	15	35	50	20	02
13.	Block Chain through Moocs / Swaym / Others (TW)	2021413	02	07	18	25	10	01
					125			
	Total Periods	per week of eac	ch duration One H	Hour = 35 Total Marks:750			24	

MICROCONTROLLERANDITSAPPLICATION(ELE CTRONICSENGINEERINGGROUP)

		Theory			Credits		
Subject	No.of Perio	ods PerWe	eek	FullMarks	:	100	
Code20214	L	Т	P/S	ESE	:	70	03
UI UI	03	-	-	ТА	:	10	-
	-	-	-	СТ	:	20	

CourseObjectives:

Theaimofthiscourseistohelpthestudentsto attainthefollowingindustryidentified competencythroughvarious teachinglearning experiences:

☐ Maintainmicrocontroller-basedsystems.

CONTENTS: THEORY

Chapter	NameoftheTopic	Hours
Unit1	Introduction Microprocessors Microcontrollers, 1.1 Introduction to Microprocessors and Microcontrollers, IntelMCS51familyfeatures. IntelMCS51familyfeatures. Interfaction to 8051 Micro-controller, 1.2 Microcontroller 8051: Pin-diagram,Introduction to 8051 Micro-controller, Architecture. Interfaction Remory organization, Special function registers and architecture. Interfacting. 1.4 Port Operation, Memory Interfacting, I/O Interfacting. Interfacting. Interfacting.	8
Unit2	 8051instructionsetandprogramming (inassembly and C programming) 2.1 Addressingmodes. 2.28051instructionset: Data Transfer, conditional instructions, arithmetic and logic operations, single bit instructions with suitable examples. 2.3 Interrupts: types of interrupts, interrupthandling. 2.4 programmable counters and timers. 2.5 Stack. 	12
Unit3	 Programming in assembly and C 3.1 Programming 8051 resources, interrupts. 3.2 Programmer's model of 8051, Operand types, Operand addressing, 3.3Data transfer instructions, Arithmetic instructions, Logic instructions, Control transfer instructions. 3.4 Timer & Counter Programming. 3.5 Interrupt Programming. 	12
Unit4	 Interfacing with input and output devices (in assembly and C program) 4.1 Keyboard, ADC, DAC, Temperature Sensors, and UART. 4.2 Timers/counters. 4.3 Stepper Motor, DC Motor. 4.4 LCD, SEVEN Segment LED. 	12
	TOTAL	44

S.N	No.	Title of Book	Author	Publication
1	The 8. archit applic	051 Micro Controller ecture, programming and cations	Kenneth J. Ayala	Western Carolina University
2	. The80 bedde	051MicroControllerandEm- edSystems	Muhammad AliMazidi&Janice GilliMazidi, R.D. Kinely	Eastern Company Edition, Prentice Hall of India, New Delhi
3	Microprod Architectu Interfacin 8085,8086	cessor & Microcontroller are: Programming & g using 5,8051	SoumitraKumarMandal	McGraw Hill Edu,
4	Microcon plementat	trollers:Architecture im- ion and Programming	Tabak Daniel, Hintz Kenneth j	Tata McGraw Hill, 2007
5	Microproo programm	cessors and interfacing: ning and hardware	Douglas V. Hall	Tata McGraw Hill, 2editon, 2007
6	6 Microcontroller and Application		Manish Bhargava	FPH
7	"Microcon Application	ntroller – Fundamentals and ons with Pic	Valder – Perez	Yeesdee Publishers, Tayler & Francis

Course outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned objective:

- 1. Analyze architecture of microcontroller ICs.
- 2. Interpret the program of 8051 in assembly language for the given operations.
- 3. Interpret the program by using timer interrupt and serial ports parallel ports.
- 4. Interface the memory and IO devices to 8051 microcontrollers.
- 5. Maintain microcontroller used in different application.

Course Articulation Matrix (CAM) Course Code: 2021401

Coursecode .COnumbe r	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021401.1	Analyze architecture of microcontroller ICs.	3	1	-	I	I	-	-	I	-
C2021401.2	Interpret the assembly language program by using 8051 Microcontroller for different operations.	2	2	3	2	-	-	1	-	-
C2021401.3	Interpret the program by using timer interrupt and serial ports parallel ports.	1	2	2	3	2	-	1	-	-
C2021401.4	Interface the memory and IO devices to 8051 microcontrollers.	1	2	3	1	-	-	2	-	-
C2021401.5 Maintain microcontroller used in different application.			3	3	3	2	2	3	-	-
C2021401 (Average)			2	2.75	2.25	2	2	1.75	-	-

Correlation levels 1, 2 or 3 as:- 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) If there is no correlation, Then put "-"

CONSUMER ELECTRONICS (ELECTRONICS ENGINEERING GROUP)

		Theory			Credits		
Subject Code	No. of Per	iods Per V	Veek	Full Marks	:	100	
2021402	L	Т	P/S	ESE	:	70	03
	04	-	-	ТА	:	10	
	-	-	-	СТ	:	20	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency

through various teaching learning experiences:

□ <u>Maintain various consumer electronic appliances/equipments.</u>

CONTENTS: THEORY

Chapter	Name of the Topic	Hours
	Audio Fundamentals and Devices	
Unit 1	1.1 Basic characteristics of sound signal, Audio level metering, decibel level	09
Unit I	in acoustic measurement.	0,
	1.2 Microphone & Types, speaker types & working principle.	l
	1.3 Sound recording principle & types.	
	Audio Systems	l
Unit 2	2.1 Hometheatresoundsystem, surroundsound.	09
Unit 2	2.2 Digitalconsoleblock diagram, working principle, applications.	
	2.3 FM tuner, ICs used in FM tuner TDA 7021T.	1
	2.4 PA addresssystem.	1
	Television Systems-	l
	3.1 Monochrome TV standards, scanning process, aspect ratio.	12
Unit 3	3.2 persistence of vision and flicker, interlace scanning, picture resolution,	1
Unit 5	Composite video signal.	l
	3.3 Color TV standards, color theory, hue, brightness, saturation, luminance	1
	and chrominance.	1
	3.4 Different types of TV camera, Transmission standards.	1
	Television Receivers and Video Systems-	l
	4.1 PAL-D color TV receiver.	12
Unit 4	4.2 Digital TVs: - LCD, LED, PLASMA, HDTV, 3- D TV, projection TV.	
	4.3 DTH receiver, Video interface, Digital Video, SDI, HDMI Multimedia	1
	Interface.	1
	4.4 Digital Video Interface, CD and DVD player.	
	Home / Office Appliances	l
Unit 5	5.1 Diagrams, operating principles and controller for FAX and	08
Chit S	Photocopier.5.2 Microwave Oven, Washing Machine.	1
	5.3 Air conditioner and Refrigerators.	1
	5.4 Digital camera and CAM coder.	
	TOTAL	50

S.No.	Title of Book	Author	Publication
1.	Consumer Electronics	Bali S.P.	Pearson Education India,2010, latest edition
2.	Audio video systems: principle practices & troubleshooting	Bali R and Bali S.P.	Khanna Book Publishing Co. (P)Ltd., 2010Delhi , India, latest edition
3.	Modern Television practices	Gulati R.R.	New Age InternationalPublication(P)Ltd.NewDe lhiYear2011, latestedition
4.	Audio video systems	Gupta R.G.	Tata Mc graw Hill, New Delhi, India 2010, latest edition
5.	Mastering Digital Television	Whitaker Jerry & Benson Blair	McGraw-Hill Professional, 2010, latest edition
6.	Consumer Electronics	Neeraj Sharma	FPH (Foundation Publishing House)
7.	Standard hand book of Audio engineering	Whitaker Jerry & Benson Blair	McGraw-Hill Professional, 2010, latest edition.

Course outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and

implemented, so that the student demonstrates the following industry-oriented COs associated with

theabove-mentioned objective:

- 1. Explain the different types of microphone and speakers.
- 2. Illustrate audio systems.
- 3. Analyze the composite video signal used in TV signal transmission.
- 4. Analyze the Troubleshoot color TV receiver.
- 5. Examine various consumer electronics appliances.

Course Articulation Matrix: Course Code: 2021402

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021402.1	Explain the Different types of microphone and speakers.		3	2	-	1	-	1	1	1
C2021402.2	illustrate audio system.	3	3	2	1	-	-	-	2	-
C2021402.3	Analyze the composite video signal used in TV signal transmission.	2	3	2	1	-	1	-	2	-
C2021402.4	Analyze the Troubleshoot color TV Receiver.	3	2	3	2	1	1	1	1	1
C2021402.5	Examine various consumer electronics appliances.	1	2	3	3	1	-	-	2	1
C2021402 (Average)			2.6	2.4	1.75	1	1	1	1.6	1

Enter correlation levels 1, 2 or 3 as:- 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) If there is no correlation, Then put "-"

DIGITAL COMMUNICATION SYSTEMS (ELECTRONICS ENGINEERING GROUP)

	Т	heory			Credits		
Subject Code	No. of Perio	ds Per	Week	Full Marks	:	100	
2021403	21403 L		P/S	ESE	:	70	03
	03	-	-	ТА	:	10	
	-	-	-	СТ	:	20	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

□ Maintain basic digital communication systems

CONTENTS: THEORY

Chapter	Name of the Topic	Hour				
		S				
Unit 1	 Blockdiagramandsub-systemdescriptionofadigitalcommunicationsystem. Sampling of low-pass and band-pass signals, PAM, PCM, signal to quantizationnoiseratioanalysisoflinearandnonlinearquantizers. Linecodes andbandwidthconsiderations;PCMTDMhierarchies. framestructures,frame synchronization and bitstuffing. 					
Unit 2	 2.1 Quantization noise analysis of DM and ADM. 2.2 DPCM and ADPCM. 2.3 Baseband transmission, matched filter,performanceinadditiveGaussiannoise. 2.4 Intersymbolinterference(ISI), Nyquist criterion for zero ISI, sinusoidal roll-off filtering 	12				
	2.5 correlative coding, equalizers and adaptive equalizers.					
	2.6 Digital subscriberlines.					
Unit 3	 3.1 Geometric representation of signals, Correlation receiver. 3.2 Generation, detection and probability of error analysis of OOK, BPSK, coherent and non-coherent FSK, QPSK and DPSK. 3.3 QAM, MSK and multicarrier modulation. 3.4 Comparison of bandwidth and bit rate of digital modulation schemes 					
Unit 4	 4.1 Introduction to Information and Oit fate of digital modulation schemes. 4.1 Introduction to Information and Coding Theories. 4.2 Information Theory: information measures, Shannon entropy, differential entropy, mutual information, capacity theorem for point-to point channels with discrete and continuous alphabets. 4.3 Introduction to channel coding, Linear Block Codes: Encoding and Syndrome Decoding.Introduction to: Hamming Codes, Cyclic Codes, CRC Codes, BCH Codes, Reed-Solomon Codes. 4.4 Convolutional Codes: Encoding and Decoding. 4.5 Turbo Codes: Turbo Encoding and Decoding. 4.6 Introduction to LDPC 					
	TOTAL	48				

S. No.	Title of Book	Author	Publication
1.	Communication Systems	Haykin, S	4th Ed., John Wiley & Sons
2.	Modern Digital and Analog Communication Systems	Lathi, B.P. and Ding, Z	Intl. 4th Ed., Oxford UniversityPress.
3.	Principles of Digital Communication: Signal Representation, Detection, Estimation and Information Coding	J. Das , S. K. Mullick and P.K. Chatterjee	New age Publisher
4.	Digital Communications	Proakis, J.G. and Saheli, M	5th Ed., McGraw-Hill
5.	Digital Communication: Fundamentals and Applications	Sklar, B., and Ray, P.K.	2nd Ed., DorlingKindersley
6.	Elements of Information Theory	T. Cover and J. Thomas	2/e, Wiley.
7.	Principles of Digital Communication	R. G. Gallager	Cambridge Univ. Press
8.	Error Control Coding	S. Lin and D. Costello	2/e, Prentice Hall.

Course Outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above mentioned objective:

- 1. Analyze various error detection and correction codes in digital communication systems.
- 2. Use various pulse code modulation techniques.
- 3. Maintain systems based on digital modulation techniques.
- 4. Select suitable digital modulation technique in different applications.
- 5. Use information theory to determine channel capacity various channels.

Course Code: -2021403

Course Articulation Matrix:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021403.1	Analyze various error detection and correction codes in digital communication systems.	3	2	2	-	1	1	-	1	1
C2021403.2	Use various pulse code modulation techniques.	3	3	2	1	1	1	1	2	1
C2021403.3	Maintain systems based on digital modulation techniques.	3	3	2	1	1	-	-	2	1
C2021403.4	Select suitable digital modulation technique in different applications.	3	3	2	1	1	1	1	2	2
C2021403.5	Use information theory to determine channel capacity various channels.	3	3	2	1	1	1	-	2	2
C2021403=average		3	2.8	2	1	1	1	1	1.8	1.4

Enter correlation levels 1, 2 or 3 as :- 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), If there is no correlation, Then put "-"

ELECTRONICS EQUIPMENT MAINTENANCE (ELECTRONICS ENGINEERING GROUP)

		Theory					Credits
Subject Code	No. of Per	iods Per V	Veek	Full Marks	:	100	
2021404	L	Т	P/S	ESE	:	70	03
	04	-	-	ТА	:	10	
	-	-	-	СТ	:	20	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

□ Maintain the electronic Equipments/Gadgets/Appliance

CONTENTS: THEORY

Chapter	Name of the Topic	Hours						
Unit 1	Fundamental Troubleshooting Procedures Inside An Electronic							
	Equipment:							
	1.1 Reading Drawings And Diagrams – Block Diagram, Circuit Diagram,							
	wiring Diagram.							
	causes such as poor design, production deficiencies, careless storage and transport, inappropriate operating conditions.							
	 1.3 Nature of faults, Fault location procedure, Fault finding aids – Service and maintenance manuals and instruction manuals. 							
	1.4 Test and Measuring instruments, special tools Troubleshooting techniques, Approaching components for tests.							
	1.5 Grounding systems in Electronic Equipment, Temperature sensitive							
	IntermittentproblemsCorrectiveactions,Situationswhererepairsshouldno							
T I 1 0	t beattempted.							
Unit 2	2.1 Resistors Canacitors Inductors Failures in fixed resistors							
	2.2 Testing of resistors variable resistors variable resistors as							
	potentiometers.							
	2.3 failures in potentiometers, testing of potentiometers, servicing							
	potentiometers.							
	2.4 LDRs and Thermistors Types of capacitors and their performance,							
	Failures in capacitors.							
	2.5 Testing of capacitors and precautions therein, variable capacitor types,							
U:4 2	2.0 Testing of Inductors and Inductance measurement.							
Unit 5	3.1 Types of semiconductor devices Causes of failure in Semiconductor							
	Devices.	00						
	3.2 Types of failure Test procedures for Diodes, special types of Diodes,	09						
	Bipolar Junction Transistors.							
	3.3 Field Effect Transistors.							
	3.4 Thyristors Operational Amplifiers, Fault diagnosis in op-amp circuits.							

Unit 4	 Logic IC families 4.1 Packages in Digital ICs, IC identification, IC pin-outs, HandlingICs. 4.2 Digitaltroubleshootingmethods-typicalfaults,testingdigital ICs with pulse generators. 4.3 Logic clip, Logic Probe, Logic Pulser, Logic Current Tracer, Logic Comparator. 4.4 Special consideration for fault diagnosisin digital circuits Handling precautions for ICs sensitive to static electricity. 4.5 Testing flip-flops, counters, registers, multiplexers and de- multiplexers, encoders and decoders. 4.6 Tri-state logic. 	11
Unit 5	 5.1 Rework and Repair of Surface Mount Assemblies Surface Mount Technology and surface mount devices. 5.2 Surface Mount Semiconductor packages – SOIC, SOT, LCCC, LGA, BGA, COB, Flat packs and Quad Packs. 5.3 Cylindrical Diode Packages, Packaging of Passive Components as SMDs. 5.4 Repairing Surface Mount PCBs, Rework Stations. 	9
	TOTAL	50

S.No.	Title of Book	Author	Publication
1.	Modern Electronic Equipment: Trouble-shooting, Repair and Maintenance	Khandpur	TMH 2006
2.	Electronic Instruments and Systems: Principles, Maintenance and Troubleshooting	R. G. Gupta	Tata McGraw Hill Edition 2001
3.	Student Reference Manual for Electronic Instrumentation Laboratories	David L Terrell	Butterworth- Heinemann
4.	Electronic Equipment and Maintenance	Siddharth Shankar	FPH
5.	Electronic Testing and Fault Diagnosis	G. C. Loveday, A. H	Wheeler Publishing

Course Outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned objective:

- 1. Select maintenance policy for equipment/appliances/gadgets.
- 2. Select troubleshooting tools for a specified work.
- 3. Maintain the electronic home appliances consumer electronics products.
- 4. Select digital troubleshooting method.
- 5. Rework and Repair of Surface Mount Assemblies

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO 1	PSO 2
C2021404.1	Select maintenance policy for equipment/appliances/gadgets.	3	2	1	2	2	2	3	2	1
C2021404.2	Select troubleshooting tools for a specified work.	1	3	2	2	-	2	2	3	2
C2021404.3	Maintain the electronic home appliances consumer electronics products.	3	2	2	1	1	-	2	2	1
C2021404.4	Select digital troubleshooting method.	2	3	2	2	1	1	-	1	2
C2021404.5 Rework and Repair of Surface Mount Assemblies.		2	1	3	3	3	-	2	3	1
C2021404 (Ave	rage)	2.2	2.2	2.6	2	1.75	1.67	2.25	2.2	1.4

Course code 2021404 Course Articulation Matrix:

Enter correlation levels 1, 2 or 3 as :- 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), If there is no correlation, Then put "-"

LINEAR INTEGRATED CIRCUITS (ELECTRONICS ENGINEERING GROUP)

]	Theory				Credits	
Subject Code	No. of Perio	ods Per We	Full Marks	:	100		
2021405	L	Т	P/S	ESE	:	70	03
	03	-	-	ТА	:	10	
	-	-	-	СТ	:	20	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

1. Maintain electronics circuits consisting of Linear Integrated Circuits.

CONTENTS: THEORY

Chapter	Name of the Topic					
Unit 1	IC Fabrication and Circuit Configuration for Linear IC					
	1.1 Advantages of ICs over discrete components–Manufacturing process of monolithic ICs.	8				
	1.2 Construction of monolithic bipolar transistor, Monolithic diodes, Integrated Resistors, Monolithic Capacitors and Inductors.					
	1.3 Current mirrors: Simple, Wilson and Widlar current mirror circuits. Current sources as active loads.					
	1.4 BJT Differential amplifier.					
Unit 2	 Applications Of Operational Amplifiers 2.1 General operational amplifier stages and internal circuit diagrams of IC- 741. 2.2 DC and AC performance characteristics, slew rate, CMRR, Open and closed loopConfigurations. 2.3 Sign Changer, Scale Changer, Linear Phase Shifter Circuits, Voltage Follower, V-to-I and I-to-V converters. 2.4 Adder, Subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier. 	10				
	2.5 Comparators, Schmitt trigger, Precision rectifier, Peak detector, Clipper, Clamper, and Sample & Hold Circuits.					
Unit 3	Analog Multiplier and Phase Lock Loop					
	 3.1 Analog Multiplier using Emitter Coupled Transistor Pair -Gilbert Multiplier cell–Variable transconductance technique. 3.2 analog multiplier ICs and their applications. 3.3 Operation of the basic PLL, Closed loop analysis, Monolithic PLL IC- 	8				
	565, applications of PLL.					

Unit 4	 Filters and Waveform Generators 4.1 Introduction to filters: Active and Passivefilter and their ideal and practical responses. 4.2 Standard transfer functions of Biquad (second order filters). Realization of low-pass, high-pass, band-pass, band-reject and all-pass filters using Op-Amp. 4.3 Introduction to Oscillators, Sine-wave generators: Wein Bridge, R-C phase shift, Hartley, Colpitts, Clapp Oscillators. 4.4 Multivibrators and Square Wave Generator, Triangular wave generator, Saw-tooth wave generator. 	10
Unit 5	 Special function ICs 5.1 IC-566 Voltage Controlled Oscillator (VCO), Timer IC-555, IC Voltage regulators. 5.2 Three terminal fixed and adjustable voltage regulators–IC-723 general purpose regulator, Monolithic switching regulator. 5.3 Frequency to Voltage and Voltage to Frequency converters. 	8
	TOTAL	44

S.No.	Title of Book	Author	Publication
1.	Microelectronic Circuits (6th Edition)	Adel S Sedra& Kenneth Carless Smith	Oxford
2.	Electronic Devices and Circuit Theory	Robert Boylestad	Pearson
3.	Design with operational amplifiers and analogintegrated circuits, 3rd Edition	Sergio Franco	Tata McGraw-Hill, 2007
4.	Analysisand DesignofAnalog Integrated Circuits	Gray and Meyer	Wiley International, 2005.
5.	OP-AMP and Linear ICs	Ramakant A.Gayakwad	Prentice Hall / Pearson Educa- tion, 4th Edition, 2001
6.	Linear Integrated Circuits	Deepak Sinha	FPH (Foundation Publishing House)
7.	System design using Integrated Circuits	B.S.Sonde	NewAgePub,2ndEdition,2001

Course Outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned objective:

- 1. Describe the different IC fabrication technique and use Op-Amp in Linear Integrated Circuits.
- 2. Use various configurations of Op-Amp for different applications.
- 3. Troubleshoot various linear applications of Op-Amp for the given specification.
- 4. Maintain filters and oscillators used in various electronic circuits.
- 5. Troubleshoot specified applications using various linear ICs.

Course code 2021405 Course Articulation Matrix:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021405.1	Describe the different IC fabrication technique and use Op-Amp in Linear Integrated Circuits.		-	-	3	-	1	1	2	-
C2021405.2	Use various configurations of Op-Amp for different applications.	3	-	-	3	-	1	1	2	-
C2021405.3	Troubleshoot various linear applications of Op- Amp for the given specification.	3	3	2	-	-	-	1	3	-
C2021405.4	Maintain filters and oscillators used in various electronic circuits.	3	1	-	3	-	1	1	2	-
C2021405.5	Troubleshoot specified applications using various linear ICs.	3	-	-	3	-	1	1	2	-
C2021405 (A	Average)	3	2	2	3	-	1	1	2.2	-

Enter correlation levels 1, 2 or 3 as:- 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), If there is no correlation, Then put "-"

MICROCONTROLLER AND ITS APPLICATION LAB (ELECTRONICS ENGINEERING GROUP)

	Р	ractical		Full Marks	:	50	Credits
Subject Code	No. of Period	ls Per Wee	ek	ESE	:	50	
2021400	L	Т	P/S	Internal(PA)	:	15	01
	-	-	02	External(ESE)	:	35	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

□ Maintain microcontroller based systems.

CONTENTS: PRACTICAL

S. No.	Name of the Topic
1.	Programming 8051 Microcontroller using ASM and C, and implementation in flash 8051
	Microcontroller.
2.	Programming with Arithmetic logic instructions [Assembly and C]
3.	Program using constructs (Sorting an array) [Assembly and C]
4.	Programming using Ports [Assembly and C]
5.	Delay generation using Timer [Assembly and C]
6.	Programming Interrupts [Assembly and C]
7.	Implementation of standard UART communication (using hyper terminal) [Assembly and C].
8.	Interfacing LCD Display [Assembly and C]
9.	Interfacing with Keypad [Assembly and C]
10.	Programming ADC/DAC [Assembly and C]
11.	Interfacing with stepper motor [Assembly and C]
12.	Pulse Width Modulation [Assembly and C]
13.	Interfacing with DC motor [Assembly and C]

S.No.	Title of Book	Author	Publication
1.	The 8051 Micro Controller and Embedded Systems	MuhammadAliMazidi& Janice GilliMazidi, R.D.Kinely	PHI Pearson Education, 5th Indian reprint
2.	The 8051 Micro Controller architecture, programming and applications	Kenneth J. Ayala	Western Carolina University
3.	Microprocessor & Microcontroller Architecture: Programming & Interfacing using 8085,8086,8051	Soumitra Kumar Mandal	McGraw Hill Edu,
4.	Microcontrollers: Architecture implementation andProgramming	Tabak Daniel, Hintz Kenneth j	Tata McGraw Hill, 2007
5.	Microprocessors and interfacing: programming andhardware	Douglas V. Hall	Tata McGraw Hill, 2editon, 2007
6.	"Microcontroller Fundamentals and Applications withPic	Valder – Perez	Yeesdee Publishers, Tayler & Francis

Course outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned objective:

- 2. Examine architecture of microcontrollerICs.
- 3. Interpret the assembly language program by using 8051 Microcontroller for different operations.
- 4. Demonstrate the Interfacing of the memory and I/O devices to 8051 microcontroller.
- 5. Interpret C program using 8051 Microcontroller for interfacing ADC/DAC, UART (serial communication) and I/O devices.
- 6. Maintain microcontroller used in different applications.

Course Articulation Matrix (CAM)

Course Code: 2021406

Coursecode.C	CO Statement									
Onumber		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021406.1	Examine the architecture of microcontroller ICs.	3	1	1	-	-	-	-	-	-
C2021406.2	Interpret the assembly language program by using 8051 Microcontroller for different operations.	2	2	3	2	2	-	1	-	-
C2021406.3	Demonstrate the Interfacing of the memory and I/O devices to 8051 microcontroller.	1	2	2	3	2	-	1	-	-
C2021406.4	Interpret C program using 8051 Microcontroller for interfacing ADC/DAC, UART (serial communication) and I/O devices.	1	2	3	1	-	-	2	-	-
C2021406.5	Maintain microcontroller used in different application.	-	3	3	3	2	2	3	-	-
C2021406 (Aver	age)	1.75	2	2.4	2.25	2	2	1.75	-	-

correlation levels 1, 2 or 3 as :- 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), If there is no correlation, Then put "-"

DIGITAL COMMUNICATION SYSTEM LAB (ELECTRONICS ENGINEERING GROUP)

Subject Code	P	ractical		Full Marks :	Credits		
2021407	No. of Perio	ds Per We	ek	ESE	:	25	0.1
	L	T P/S		Internal(PA)	:	07	01
	-	-	02	External(ESE)	:	18	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

SI No	Name of Tonic
51.140	Name of Topic
• 1	Generation and Detection of Pulse Code Modulation and Differential Pulse Code Modulation.
2	Generation and Detection of Delta Modulation and Adaptive Delta modulation.
	Simulation and Performance Analysis of Band Pass Signal Transmission and Reception using MATLAB
3	Amplitude ShiftKeying
	Frequency ShiftKeying
	Phase ShiftKeying.
4	Generation and Detection of QPSK signal using MATLAB
5	Implementation of Amplitude Shift Keying using Hardware
6	Implementation of Frequency Shift Keying using Hardware
7	Implementation of Phase Shift Keying using Hardware
8	Time Division Multiplexing: PLL (IC-565) based synch, clock and data extraction
9	Implement encoding and decoding of Linear Block Code using MATLAB.
10	Implement encoding and decoding of Convolutional Code using MATLAB.
11	Implement encoding and decoding of Turbo Code using MATLAB
12	Implement encoding and decoding of LDPC code using MATLAB

CONTENTS: PRACTICAL

S.No.	Title of Book	Author	Publication
1.	Communication Systems	Haykin, S	4th Ed., John Wiley& Sons
2.	Modern Digital and Analog Communication Systems	Lathi, B.P. and Ding, Z	Intl.4thEd.,OxfordUniversity Press.
3.	Digital Communications	Proakis,J.G.andSaheli,M	5th Ed., McGraw-Hill
4.	Digital Communication: Fundamentals and Applications	Sklar, B., and Ray, P.K	2nd Ed., Dorling Kindersley
5.	Elements of Information Theory	T. Cover and J. Thomas	2/e, Wiley.
6.	Principles of Digital Communication	R. G. Gallager	Cambridge Univ. Press
7.	A Foundation in Digital Communication	A. Lapidoth	Cambridge Univ. Press
8.	Error Control Coding	S. Lin and D. Costello	2/e, Prentice Hall.

Course Outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned objective:

- 7. Apply various error detection and correction codes in digital communicationsystems.
- 8. Examine various pulse code modulationtechniques.
- 9. Maintain systems based on digital modulationtechniques.
- 10. Investigate different shift keying methods.

Course Articulation Matrix (CAM) Course Code: 2021407

Coursecode.C Onumber	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021407.1	Apply various error detection and correction codes in digital-communication systems.	3	1	1	-	-	-	-	-	-
C2021407.2	Examine various pulse code modulation techniques.	2	2	3	2	2	-	1	-	-
C2021407.3	Maintain systems based on digital modulation techniques.	1	2	2	3	2	-	1	-	-
C2021407.4	Investigate different shift keying methods.	1	2	3	1	-	1	2	-	-
C2021406 (Average)			1.75	2.25	2.0	2	1	1.33	-	-

Enter correlation levels 1, 2 or 3 as :

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) If there is no correlation, Then put "-"

LINEAR INTEGRATED CIRCUIT LAB (ELECTRONICS ENGINEERING GROUP)

~ ~ .	Р	ractical		Full Marks :	25		Credits
Subject Code	No. of Period	ds Per Wee	ek	ESE		25	
2021400	L	Т	P/S	Internal(PA)	:	07	01
	-	-	02	External(ESE)	:	18	

Course Objectives:

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

□ Maintain electronics circuits consisting of Linear Integrated Circuits.

CONTENTS: PRACTICAL

Sl .No	Name of the Topic
1.	a) Verify the open loop transfer characteristics of Op-Amp using IC- 741. Also determine gain of b)
	Inverting, c)Non-inverting and d) Buffer amplifier using IC-741on breadboard.
2.	Design Wein Bridge Oscillator using IC-741on bread board and determine the frequency of
	oscillation.
3.	Design Square wave generator using IC-741 and calculate the duty cycle of the generated waveform.
4.	Design an Astable Multivibrator using IC-555 Timer and calculate the duty cycle and pulse width of
	the generated waveform.
5.	Design aMonostable multivibrator using IC-555 Timer and calculate the pulse width of the generated
	waveform.
6.	Design a 2 nd order active low pass filter using IC741 Op-Amp
7.	Design a 2 nd order active high pass filter using IC741 Op-Amp.
8.	Design a 2 nd order active band pass filter using IC741 Op-Amp
9.	Design a 2 nd order active band reject filter using IC741 Op-Amp.
10.	Calculate the lock range and capture range of PLL using IC- 565.
11.	ConstructSample and Hold circuit using IC-741on bread board.

Course Outcomes:

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned objective:

- 1. Analyze and build Op-Amp circuits using IC-741 for linear and non-linear applications.
- 2. Analyze the frequency response of an Op-Amp in different modes of operation.
- 3. Analyze and design 2^{nd} order analog filters using Op-Amp.
- 4. Analyze and design oscillators for communication systems using Op-Amp.
- 5. Select suitable linear IC and design analog circuits to perform timing operation, frequency multiplication a voltage regulation.

Co	ourse Outcomes	Experiment Title		Lab SessionLearning Outcomes
1.	Analyze and build Op-Amp circuits using IC-741 for linear and non- linear applications.	1-a) Verify the open loop transfer characteristics of Op-Amp using IC- 741. Also determine gain of b) Inverting, c)Non-inverting and d) Buffer amplifier using IC-741on breadboard.	i. ii. iii. b	 Select appropriate settings to calibrate the CRO. Verify the required value of power supply output using CRO a) Observe the open loop transfer characteristics on CRO. b) Compare the input and output waveforms on CRO and calculate the gain of inverting amplifier. c) Compare the input and output waveforms on CRO and calculate the gain of non-inverting amplifier.
2.	Analyze the frequency response of an Op-Amp in different modes of operation.	2) Design Wein Bridge Oscillator using IC-741on bread board and determine the frequency of	d iv. v. i. ii. iii.	 Compare the input and output waveforms on CRO and calculate the gain of buffer amplifier. Sketch the output waveforms on butter paper from CRO screen. Follow safe practices while handling electronic equipments. Select appropriate settings to calibrate the CRO. Verify the required value of power supply output using CRO. Select appropriate values of passive components required for
3.	Analyze and design 2 nd order analog filters using Op-Amp.	oscillation.	iv. v.	 condition of oscillation (CO) and frequency of oscillation (FO). Connect the identified components to form Oscillator Circuit on breadboard. Observe the output waveform and find the frequency of accillation
4.	Analyze and design oscillators for communication		vi.	oscillation. Follow safe practices while handling electronic equipments.
5.	Select suitable linear IC and design analog circuits to perform timing operation	3) Design Square wave generator using IC-741 and calculate the duty cycle of the generated waveform.	i. ii. iii. iv. v.	 Select appropriate settings to calibrate the CRO. Verify the required value of power supply output using CRO. Select appropriate values of passive components foroutput frequency. Connect the identified components to form Square Wave generator circuit on breadboard. Observe the output waveform and find the frequency of oscillation.
	frequency multiplication and voltage regulation.	4) Design an Astable Multivibrator using IC-555 Timer and calculate the duty cycle and pulse width of the generated waveform.	vi. vii. i. ii. iii. iv.	 Calculate the duty cycle of the waveform. Follow safe practices while handling electronic equipments. Select appropriate settings to calibrate the CRO. Verify the required value of power supply output using CRO. Select appropriate values of passive components foroutput frequency. Connect the identified components to form Astable multivibrator circuit on breadboard.
			v. vi. vii.	Observe the output waveform and find the frequency of oscillation. Calculate the duty cycle and pulse width of the waveform. Follow safe practices while handling electronic equipments.
		5) Design aMonostable multivibrator using IC-555 Timer and calculate the pulse width of the generated waveform.	i. ii. iii. iv.	Select appropriate settings to calibrate the CRO. Verify the required value of power supply output using CRO. Select appropriate values of passive components foroutput frequency. Connect the identified components to form monostable multivibrator circuit on breadboard. Observe the output waveform and find the frequency of

Learning Task 2 (Individual Task) Formulating Psychomotor Learning Outcomes

Course Outcomes	Experiment Title	Lab SessionLearning Outcomes
		oscillation.
		vi. Calculate the pulse width of the waveform.
		vii. Follow safe practices while handling electronic equipments.
	6) Design a 2^{nd} order active low	i. Select appropriate settings to calibrate the CRO and Function
	pass filter using IC741 Op-	Generator.
	Amp.	ii. Verify the required value of power supply output using CRO
	1	iii. Select appropriate values of passive components required for
		low pass filter
		iv. Connect the identified components to form low pass filter
		Circuit on breadboard.
		v. Plot the filter response and calculate the cut-off frequency of
		the low-pass filter.
	7) Designed 2 nd and section	vi. Follow sale practices while handling electronic equipments
	7) Design a 2 nd order active	1. Select appropriate settings to calibrate the CRO and Function
	high pass filter using IC/41 Op-	ii Varify the required value of newer supply output using CPO
	Amp	iii Select appropriate values of passive components required for
		high pass filter
		iv Connect the identified components to form high pass filter
		Circuit on breadboard.
		v. Plot the filter response and calculate the cut-off frequency of
		the low-pass filter.
		vi. Follow safe practices while handling electronic equipments
	8) Design a 2^{nd} order active	i. Select appropriate settings to calibrate the CRO and Function
	band pass filter using IC741	Generator.
	Op-Amp.	ii. Verify the required value of power supply output using CRO
		iii. Select appropriate values of passive components required for
		band pass filter
		iv. Connect the identified components to form band pass filter
		Circuit on breadboard.
		v. Plot the filter response and calculate the cut-off frequency of the low page filter
		vi Follow safe practices while handling electronic equipments
	0) Design a 2^{nd} order active	i Select appropriate settings to calibrate the CRO and Function
	band reject filter using IC741	Generator
	On Amn	i. Verify the required value of power supply output using CRO
	Op-Amp.	iii. Select appropriate values of passive components required for
		band reject filter
		iv. Connect the identified components to form band reject filter
		Circuit on breadboard.
		v. Plot the filter response and calculate the cut-off frequency of
		the low-pass filter.
		vi. Follow safe practices while handling electronic equipments.
	10) Calculate the lock range	i. Select appropriate settings to calibrate the CRO and Function
	and capture range of PLL using	Generator.
	IC- 565	11. Verify the required value of power supply output using CRO
		in. Select appropriate values of passive components.
		circuit
		v Observe the lock and canture range on CRO
		vi Follow safe practices while handling electronic equipments
	11) ConstructSample and Hold	
	circuit using IC-741on bread	i. Select appropriate settings to calibrate the CRO and Function
	board	Generator.
	loonu.	ii. Verify the required value of power supply output using CRO

Course Outcomes	Experiment Title	Lab SessionLearning Outcomes
		 iii. Select appropriate values of passive components. iv. Connect the identified components to IC-741 to form sample and hold circuit on breadboard. v. Observe the input and output waveform on the CRO. vi. Follow safe practices while handling electronic equipments.

S.No.	Title of Book	Author	Publication		
1.	Microelectronic Circuits (6th Edition) -	Adel S Sedra& Kenneth Carless Smith	Oxford		
2.	Electronic Devices and Circuit Theory	Robert Boylestad	Pearson		
3.	Analysis and Design of Analog Integrated Circuits	Gray and Meyer	Wiley International, 2005.		
4.	OP-AMP and Linear ICs	Ramakant A. Gayakwad	Prentice Hall / Pearson Education, 4th Edition, 2001		

Course Articulation Matrix (CAM) Course Code: 2021408

Coursecode.C	CO Statement
Onumber	

Coursecode.C	CO Statement									
Onumber		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2021408.1	Analyze and build Op-Amp circuits using	3	2	1	3	-	-	-	-	-
	IC-741 for linear and non-linear									
	applications.									
C2021408.2	Analyze the frequency response of an Op-	2	2	3	2	2	-	1	-	-
	Amp in different modes of operation.									
C2021408.3	Analyze and design 2nd order analog filters	3	2	2	3	2	-	1	-	-
	using Op-Amp.									
C2021408.4	Analyze and design oscillators for	2	2	3	2	-	-	2	-	-
	communication systems using Op-Amp.									
C2021408.5	Select suitable linear IC and design analog	3	3	3	3	2	2	3	-	-
	circuits to perform timing operation,									
	frequency multiplication and voltage									
	regulation.									
C2021408 (Avera	age)	2.6	2.2	2.4	2.6	2	2	1.75	-	-

Enter correlation levels 1, 2 or 3 as : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) If there is no correlation, Then put "-"

MATLAB

(ELECTRONICS ENGINEERING GROUP)

		Prac	tical	Full Marks :		25	Credits
Subject Code	No. of Peri	ods Per V	Veek	ESE	:	25	
(2020409)	L	Т	P/S	Internal(PA)	:	07	01
	-	-	02	External(ESE)	:	18	
	-	-	-	-	-	-	

Unit-1	MATLAB Environment						
	1.1 Introduction, MATLAB environment, MATLAB as a calculator, MATLAB Online,						
	Syntax and Semantics, Help, Plotting.						
	1.2 Matrices and Operators: Introduction, the Colon Operator, Accessing Parts of a Matrix,						
	Combining and Transforming Matrices.						
	1.3 Arithmetic Part 1, Arithmetic Part 2, Operator Precedence.						
Unit-2	Functions:						
	2.1 Introduction, Function I/O, Formal Definition of Functions, Sub Functions.						
	2.2 Scope.						
	2.3 Advantages of Functions, Scripts, a Problem Solving.						
Unit-3	Programmer's Toolbox:						
	3.1 Introduction, Matrix Building, Input-Output, Plotting, Debugging.						
	3.2 Selection: Selection, If- Statements, Relational and Logical Operators, Nested if-						
	Statements.						
	3.3 Variable Number of Function Arguments, Robustness, Persistent Variables.						
Unit-4	Loops:						
	4.1 For -Loops While – Loops, Break Statements, Logical Indexing.						
	4.2 Data Types Introduction, Strings, Structs, Cells.						
Unit-5	File Input / Output:						
	5.1 I/O, Excel Files, Text Files, Binary Files.						
	5.2 Applications of MATLAB inElectrical Machine, Power system, Control System and Dower Electronics						
Unit-6	Simulink •						
Unit-0	6.1 Getting Started Simulink Library Browser						
	6.2 Connections. Block Specification.						
	6.3 Toolboxes, Building Systems, Applications.						

List of Practicals:

1.	Basic Operations on Matrices.
2.	Generate various elementary pulses (like rectangular, square, triangular, trapezoidal and sin).
2.	Generation of Various Signals such as Unit impulse, unit step, square, saw tooth, triangular,
	sinusoidal, ramp, sinc etc.

3.	Operations on signals and sequences such as addition, multiplication, scaling, shifting,						
	folding,Computation of energy and average power.						
4.	Mesh and Nodal analysis of electrical circuits.						
5.	Application of network theorems such as Thevenin's, Norton's, Superposition etc. to electrical networks.						
6.	Locating Zeroes and poles and plotting the pole-zero maps in S plane and for the given TF.						
7.	Simulation of DC circuits.						
8.	Measurement of Active power of three phase circuit for balanced loads.						
9.	Simulation of single-phase diode bridge rectifiers with filter for R and RL loads.						

References / Text Books:

- 1. Books
 - (i) Computer Programming with MATLAB by J. Michael Fitzpatrick and AkosLedeczi
 - (ii) Getting Started with MATLAB : A Quick Introduction for Scientists and Engineers by RudraPratap
- 2. Video Lectures (Web Links):
- (1) <u>https://ocw.mit.edu/courses/mathematics/18-s997-introduction-to-matlab-programming.fall2011/index.html</u>
- (2) <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-094-introduction-tomatlab-january-jjap-2010/index.html</u>.
- (3) <u>https://in.mathworks.com/vidoes/getting-started-with-matlab-68985.html</u>.
- (4) <u>https://www.mathworks.com/examples/</u>
- (5) <u>https://www.coursera.org/learn/matlab</u>

Course Outcomes:

- 1. Togenerate the sinewaveusing MATLAB.
- 2. TogeneratetheimpulsesignalusingMATLAB.
- 3. To find the displacement and pressure using LVDT and Bellows.
- 4. To find the Frequency response f capacitive Transducer

Course Articulation Matrix (CAM) Course Code: 2020409

Coursecod e.COnumb er	COStatement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2020409.1	Togeneratethe sinewaveusingMATLAB.	3	1	1	2	1	-	1	2	1
C2020409.2	Togeneratetheimpulsesignalusing MATLAB.	3	2	2	2	2	2	2	2	2
C2020409.3	To find the displacement and pressure using LVDT and Bellows.	2	1	2	2	1	1	2	2	1
C2020409.4	To find the Frequency response of capacitive Transducer.	3	2	2	1	1	-	1	2	1
C2020409(A	verage)	3	2	2	1	1	1	1	2	2

Enter correlation levels 1, 2 or 3 as :

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) If there is no correlation, Then put "-"

ESSENCE OF INDIAN KNOWLEDGE AND TRADITION (TW) (ELECTRONICS ENGINEERING GROUP)

		Term	Work		Credits		
Subject Code	No. of Peri	iods Per V	Veek	Full Marks	:	25	
2021410	L	Т	P/S	Internal(PA)	:	07	01
	-	-	02	External(ESE)	:	18	
	-	-	-	-	-	-	

Course Content:

Basic Structure of Indian Knowledge

(i) वेद, (ii) उन्नवेद (आयुवेद, धनुवेद, गन्धवेद, स्थानत्य आदद) (iii) वेदाांग (शिक्षा, कल्न, ननरुत, व्याकरण, ज्योनतष छांद), (iv) उन्नाइग (धर्म सि, रीराांसा, नुराण, तकमािस्र)

- ☐ Modern Science and Indian Knowledge
- □ System Yoga and Holistic Health care

System:

Case Studies.

References:

S.No.	Title of Book	Author	Publication
1.	Cultural Heritage of India- Course Material	V. Sivaramakrishna	Bharatiya Vidya Bhavan, Mumbai, 5th Edition, 2014
2.	Modern Physics and Vedant	Swami Jitatmanand	Bharatiya Vidya Bhavan
3.	The web of Life	Fritzof Capra	
4.	Tao of Physics	Fritzof Capra	
5.	Tarkasangraha of Annam Bhatta, Inernational	V N Jha	Chinmay International Foundation, Velliarnad, Amakuam
6.	Science of Consciousness Psychotherapy and YogaPractices	R N Jha	VidyanidhiPrakasham, Delhi, 2016

MICROPROCESSORS AND ITS APPLICATION LAB (TW)

	Term Work						Credits
Subject Code	No. of Periods Per Week			Full Marks	:	25	
(2021411)	L	Т	P/S	Internal(PA)	:	07	01
	-	-	02	External(ESE)	:	18	
	-	-	-	-	-	-	

CONTENTS: PRACTICAL

Intellectual Skills:

- 1. Logical development
- 2. Programmingskills

Motor Skills:

- $1. \ Data entry, Error Correction and Execution of assembly language programs$
- 2. ConnectionSkills

List of Practical's:

Using microprocessor 8085 kit:

- a. Demonstration and study of microprocessorkit
- b. Programforadditionofandsubtractionoftwohexadecimalnumbers
- c. Program for finding largest / smallestnumber
- d. Programforarrangingnumbersinascending/descendingorder
- e. Program for 16-bitaddition
- f. Program for datamasking
- g. Programformultiplicationoftwoeight-bitnumbers
- h. Program using JMPInstruction
 - i. Two programsusing

Loop.

MINOR PROJECT(TW)

Subject Code 2021412	Term Work						Credits
	No. of Periods Per Week			Full Marks	:	50	
	L	Т	P/S	Internal(PA)	:	15	02
	-	-	04	External(ESE)	:	35	
	-	-	-	-	-	-	

BLOCK CHAIN THROUGH MOOCS / SWAYAM / OTHERS (TW)

	Term Work						Credits
Subject Code	No. of Periods Per Week			Full Marks	:	25	
(2021413)	L	Т	P/S	Internal (PA)	:	07	01
	-	-	02	External(ESE)	:	18	
	-	-	-	-	-	-	